model { for(i in 1:N){ mu_M1[i,1] <- 1 #baseline is the 1st category mu_M1[i,2] <- exp(alpha1*x[i]) mu_M1[i,3] <- exp(alpha2*x[i]) sum_M[i] <-mu_M1[i,1]+mu_M1[i,2]+mu_M1[i,3] for (k in 1:3) {mu_M[i,k] <- mu_M1[i,k]/sum_M[i]} M[i]~dcat(mu_M[i,]) mu_y[i] <-c*x[i]+beta1*equals(M[i],2)+beta2*equals(M[i],3) y[i] ~ dnorm(mu_y[i],prec2) j1[i]~dunif(0.5,100.5) j2[i]~dunif(0.5,100.5) j3[i]<- round(j1[i]) j4[i]<- round(j2[i]) mu_M1.2[i,1] <- 1 #baseline is the 1st category mu_M1.2[i,2] <- exp(alpha1*(x[i]+deltax)) mu_M1.2[i,3] <- exp(alpha2*(x[i]+deltax)) sum_M.2[i] <-mu_M1.2[i,1]+mu_M1.2[i,2]+mu_M1.2[i,3] for (k in 1:3) {mu_M.2[i,k] <- mu_M1.2[i,k]/sum_M.2[i]} mu_y1[i]<- c*(x[i]+deltax)+beta1*mu_M.2[i,2]+beta2*mu_M.2[i,3] mu_y0[i] <-c*x[i]+beta1*mu_M[i,2]+beta2*mu_M[i,3] te[i]<-(mu_y1[i]-mu_y0[i])/deltax mu_M1.3[i,1] <- 1 #baseline is the 1st category mu_M1.3[i,2] <- exp(alpha1*x[j3[i]]) mu_M1.3[i,3] <- exp(alpha2*x[j3[i]]) sum_M.3[i] <- mu_M1.3[i,1]+mu_M1.3[i,2]+mu_M1.3[i,3] for (k in 1:3) {mu_M.3[i,k] <- mu_M1.3[i,k]/sum_M.3[i]} mu_y2[i]<- c*x[i]+beta1*mu_M.3[i,2]+beta2*mu_M.3[i,3] mu_M1.4[i,1] <- 1 #baseline is the 1st category mu_M1.4[i,2] <- exp(alpha1*x[j4[i]])#changed j4 to j3 to reduce variance mu_M1.4[i,3] <- exp(alpha2*x[j4[i]])#changed j4 to j3 to reduce variance sum_M.4[i] <- mu_M1.4[i,1]+mu_M1.4[i,2]+mu_M1.4[i,3] for (k in 1:3) {mu_M.4[i,k] <- mu_M1.4[i,k]/sum_M.4[i]} mu_y3[i]<- c*(x[i]+deltax)+beta1*mu_M.4[i,2]+beta2*mu_M.4[i,3] de[i]<-(mu_y3[i]-mu_y2[i])/deltax ie[i]<-te[i]-de[i] } alpha1 ~ dnorm(0.0,0.01) alpha2 ~ dnorm(0.0,0.01) beta1 ~ dnorm(0.0,0.000001) beta2 ~ dnorm(0.0,0.000001) c ~ dnorm(0.0,0.000001) var2 ~ dgamma(1,0.1) prec2 <-1/var2 }